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Abstract: These are explanatory notes to myself on well-
known subjects. This discusses: Nets, Ellis enveloping semi-
group and the Stone-Čech compactification.

§A Nets

A directed-set I is a poset (((I,4 ))) such that

∀i,j ∈ I, ∃k ∈ I for which, simultaneously,
k < i and k < j.

A subset S ⊂ I is eventual if

∃k, ∀i < k : S 3 i .

In contrast, S is a frequent (or cofinal) subset of I if

∀k, ∃i < k : S 3 i .

Given directed-sets (((I,4 ))) and (((J,2 ))), the product
directed-set (((I × J,6 ))) has partial-order

(((i, j))) 6 (((i′, j′))) IFF
[
i 4 i′ & j 2 j′

]
.

We know that in a metric space,♥1 the convergent
sequences determine the topology. In a topological
space X, the role of sequence is played by a more
general object called a “net”. A net, in X, is a map-
ping from a directed-set I intoX. Agree to write a net
as 〈xi〉i∈I or –suppressing I– as ~x. To indicate that
each xi lies in a subset A ⊂ X, I may write ~x ⊂ A.

Convergence
One writes

xi� y or y = lim
i∈I

xi or y = netlim(~x)

♥1Indeed, this holds in each LCG (locally-countably generated)
space.

if: For each open U 3 y, the set {i | xi ∈ U} is even-
tual. One says that “the net ~x is eventually in each
given neighborhood of y.”

Similarly, y is an accumulation point of ~x if –for
each nbhd U 3 y– the net is frequently in U .

Henceforth, let N[y] denote the directed-set of open
nbhds of y. So in the directed-set

(((
N[y],4

)))
the rela-

tion “U 4 V ” means U ⊃ V .

1: Lemma. X is a topological space.

a: X is Hausdorff IFF net limits are unique.

b: For A ⊂ X: If y is an accumulation point of a
net ~a ⊂ A then y ∈ A. Conversely, if y ∈ A then
there exists a net in A which converges to y.

c: A map f :X→Ω is continuous IFF for each con-
vergent net ~x = 〈xi〉i in X, its image

〈
f(xi)

〉
i
is

a convergent net in Ω. (We may write this image net
as f(~x).) ♦

Proof of (a). Suppose a net converges to both y and z.
Given neighborhoods U ∈ N[y] and V ∈ N[z], the net
is eventually in both U and V and so these nbhds are
not disjoint.

Conversely, suppose that y and z do not have dis-
joint separate nbhds. Then for each pair U 3 y and
V 3 z we can pick a point x(((U,V ))) in U ∩ V . The re-
sulting net ~x is indexed by the product directed-set
N[y]×N[z]. And netlim(~x) = y and netlim(~x) = y.�

Proof of (b). For the second assertion, suppose that
y ∈ A and let N = N[y]. For each V ∈ N pick a point,
call it aV , in A ∩ V . Then 〈aV 〉V ∈N forms a net con-
verging to y. �

Proof of (c). To prove the (⇒) direction, suppose
that net 〈xi〉i converges to a point z ∈ X. For each
nbhd V of f(z), the set f 1(V ) is a nbhd of z and
so 〈xi〉i is eventually in f 1(V ). Hence

〈
f(xi)

〉
i
is

eventually in V . Thus f(xi)→
i
�f(z).

For the (⇐) direction, suppose f not continuous.
Then there is an open V ⊂ Ω and a point z ∈ f 1(V )
such that every nbhd U of z “sticks out” of f 1(V )
i.e, letting N denote N[z],

∀U∈N : There exists a point xU ∈ U r f 1(V ).
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By construction, then, 〈xU 〉U∈N is a net in X converg-
ing to z. Yet the net

〈
f(xU )

〉
U∈N cannot be converg-

ing to f(z) since this net is included in the comple-
ment of V . �

Def: The analog of a subsequence. Consider two
directed-sets (((S,6 ))) and (((I,4 ))). A directed-set
map (DSMap) is a map ϕ:S→I (not necessarily injective
nor surjective) such that

†a: ϕ is order preserving: s1 6 s2 =⇒ ϕ(s1) 4
ϕ(s2).

†b: The range, ϕ(S), is frequent: For all k ∈ I there
exists s ∈ S with ϕ(s) < k.

A DSMap ϕ determines a subnet
〈
xϕ(s)

〉
s∈S . We

might let as denote xϕ(s) and write the subnet as
~a = 〈as〉s∈S .

Sometimes the map ϕ is implicit. For example, sup-
pose that N is a directed-set. Then one subnet of
〈xi〉i∈I is 〈

xi
〉
(i,V )∈I×N .

Here, our S is I×N, with product order, and ϕ is the
“forgetful function” (((i, V ))) 7→ i. �

2: Theorem. A point y ∈ X is an accumulation
point of net 〈xi〉i∈I IFF there exists a subnet which
converges to y. ♦

Proof of (⇒). Let N = N[y] and let (((I ×N,6 )))
be the product directed-set. Let S be the sub-poset
consisting of those pairs (((i, V ))) such that xi ∈ V . Now
(((S,6 ))) is a directed-set: Suppose that (((i, V ))) and
(((i′, V ′))) are in S. Pick j ∈ I dominating i and i′.
Since y is an accumulation point of 〈xj〉j∈I there exists
k ≥ j for which xk ∈ V ∩ V ′. Thus (((k, V ∩ V ′))) is an
element of S dominating both (((i, V ))) and (((i′, V ′))).

The net 〈xi〉(i,V )∈S is a subnet of 〈xi〉i∈I and it by
definition converges to y. �

Proof of (⇐). Suppose ϕ:S→I is a DSMap such that

lim
s∈S

xϕ(s) = y .

Fixing a nbhd U of y, the set E := {s | xϕ(s) ∈ U}
is eventual in S. Thus its image, ϕ(E), is frequent
in I. �

3: Theorem. X is compact IFF every net 〈xi〉i has a
convergent subnet. ♦

Proof of (⇒). By the preceding theorem, it suffices to
show that the net has an accumulation point. Suppose
it does not. Then for each point y ∈ X there is an
open set U 3 y for which the net fails to be frequently
in U . So there exists γ ∈ I with xi /∈ U for every i <
γ.

Make explicit the dependence by writing Uy and γy.
By compactness there is a finite set of points y, call
it F , such that {Uy}y∈F covers X. But for each i ∈ I
which dominates all the {γy}y∈F , we have the absur-
dity that xi fails to be in

⋃
y∈F Uy —which equals X.�

Proof of (⇐). Assume X is non-compact and let O

be a open cover with no finite subcover. Set

I :=
{
F ⊂ O

∣∣ F is finite
}
.

Since the union of two finite sets is finite, the
pair (((I,⊂ ))) is a directed-set. For each F, the union⋃
F is not all of the space and so we can choose a

point

xF ∈ X r
⋃

F .

Could the net
〈
xF
〉
F∈I have an accumulation point y ∈

X? Fix some V ∈ O owning y. Then ~x fails to be
frequently in V , since xF /∈ V for each F 3 V —that
is, as soon as F is greater than the singleton {V } in
the partial order on I. So y is not an acc. point. �
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§B Enveloping Semigroup

Consider a semigroup H and define, for each g ∈ H,
the right and left multiplications RgLg:H→H by s 7→
sg and s 7→ gs. Evidently

Rg ◦Rh = Rhg Lg ◦ Lh = Lgh

A half-topological semigroup H is a non-void com-
pact Hausdorff topological space such that each Rg
is continuous. Let L(H) denote the set of g ∈ H
such that Lg is continuous. This L(H) is a sub-semi-
group which is, generally, not compact. For each sub-
set H ⊂ H, let Z(H) (the center of H) denote the set
of σ ∈ H which commute with every member of H.

4: Lemma. Suppose H is a subsemigroup of L(H)
and let H denote the closure of H in H.

a: H is a semigroup; hence it is an half-topological
semigroup.

b: Z(H) ⊃ Z(H). ♦

Proof of (a). For each pair β,ζ ∈ H, pick
nets ρi� β and γj � ζ in H. For each fixed i
we have, since Lρi is continuous, that ρiγj→

j
�ρiζ.

Hence H ⊃ {ρiζ | i ∈ I}. But Rζ is continuous and
so

βζ
note
=== lim

i∈I
ρiζ

is in H. �

Proof of (b). Fix σ ∈ Z(H). Given β ∈ H, we will
show that σβ = βσ. Pick a net H 3 ρi� β. Thus

σρi� σβ , since σ ∈ L(H);

ρiσ� βσ , since right multiplication is
continuous.

But σρi equals σρi by hypothesis. Thus the righthand
sides are equal and so σ ∈ Z(H). �

An algebraic (left) ideal is a subset I ⊂ H satis-
fying HI ⊂ I. An “ ideal I ” shall mean a non-empty
algebraic ideal which is compact. Similarly, an al-
gebraic sub-semigroup H ⊂ H satisfies HH ⊂ H
whereas a “semigroup H ” will be, in addition, non-
empty and compact. Thus a semigroup, now, is what
we were previously calling a “half-topological semi-
group” . By Zorn’s lemma, each semigroup H includes

a: a minimal ideal I.

b: a minimal sub-semigroup H.

5: Lemma. Each minimal semigroup H is a single-
ton {η}; thus η is an idempotent element. ♦

Remark. Each ideal I in a semigroup H is itself a
semigroup. Thus each ideal contains an idempotent
element. �

Notation: Agree to use “minimalness” as the prop-
erty of a minimal ideal or sub-semigroup, in contrast
to the “minimality” of a minimal set in X.

Proof. Fix an η in our minimal semigroup H. Then
Hη note

=== Rη(H) is the continuous image of a compact
set and is therefore itself compact. Since Hη is a
semigroup, and Hη ⊂ H, minimalness implies that
Hη = H. Thus the set

H :=
{
σ ∈ H

∣∣ ση = η
}

is non-empty. Now H is the inverse image of a closed
set under a continuous map, since H is R 1

η

(
{η}

)
.

ThusH is closed, hence compact. EvidentlyHH ⊂ H
and so the minimalness of H yields that H = H.
Hence η ∈ H and is idempotent. �

6: Lemma. Consider T :X �, a continuous self-map of
a compact Hausdorff topological space. Then

a:
(((
X×X , ◦

)))
is a half-topological semigroup, where ◦

denotes composition.

b: For each α ∈ X×X : The mapping η 7→ αη is con-
tinuous IFF α:X→X is continuous. ♦

Proof of (a). X×X is compact Hausdorff by Ty-
chonoff’s theorem and is a semigroup under composi-
tion. We need but check that right multiplication is
continuous. So fixing α, β ∈ X×X , we show that Rα
is continuous at β.

In the product topology, “ηi � β” is equivalent to
“∀x ∈ X : ηi(x)→

i
�β(x)”. This implies that

∀x ∈ X : ηi
(
α(x)

)
→
i
�β

(
α(x)

)
.

So ηiα→
i
�βα. Thus η 7→ ηα is continuous. �
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Proof of (b). For the (⇐) direction, suppose α contin-
uous. If ηi� β then for all x one has ηi(x)� β(x)
and consequently α

(
ηi(x)

)
→
i
�α

(
β(x)

)
by the conti-

nuity of α. Thus αηi� αβ.
Conversely, for each convergent net xi� y in X,

there exists a convergent net ηi� β in X×X with
ηi(y) = xi and β(y) = y. (Just let β be the identity and
let each ηi be the identity except at y.) If α is such that left
multiplication is continuous, then αηi must converge
to αβ. A fortiori αηi(y)� αβ(y), i.e α(xi)→

i
�α(y).

This shows α to be continuous as a self-map of X. �

Definition. Given an algebraic semigroup H in-
cluded in L

(
X×X

)
, its closure H ⊂ X×X is a semi-

group by (4). The Ellis enveloping semigroup of T ,
written E(T ) or E(X), is the closure of the pow-
ers

{
Tn

∣∣ n ∈ Z+
}

in X×X . So, “orbit” will mean
“forward orbit”. Agree to use OT (x) or just O(x) to
denote the (forward) orbit {Tn(x)}∞n=1. Let O(x) de-
note its closure. As an aside, by (4) the powers of T
commute with every member of E(T ). �

Mirroring dynamical properties in
the enveloping semigroup

Let E denote E(X) and α, β, η denote elements of E.
For a subset H ⊂ E, let H(x) denote {α(x) | α ∈ H}.
Thus E(x) equals O(x).

Two points x, y are proximal, written xPy, if
OT×T (x, y) intersects the diagonal. Thus xPy IFF
there exists α such that α(x) = α(y). For future use,
recall that a distal point x ∈ X is proximal, among
points y ∈ O(x), only to itself.

A point x is recurrent if for each neighborhood
U 3 x there exists a positive n with Tn(x) ∈ U . That
is, there is a net such that Tni(x)→

i
�x; hence, if

β(x) = x for some β.
Point x is almost-periodic if O(x) is a minimal

set, or equivalently: y ∈ O(x) =⇒ x ∈ O(y). That
is, if and only if ∀α,∃β such that β(α(x)) = x.

It is convenient to note the following.

‡a: For fixed x, y ∈ X: The (possibly empty) set
{α ∈ E | α(x) = α(y)} is a closed algebraic ideal.

‡b: With fixed x ∈ X and sub-semigroup H: The
(possibly empty) set {β ∈ H | β(x) = x} is a closed
algebraic semigroup.

7: Lemma. If I is a minimal ideal of E, then for
each γ ∈ I:

∀x : γ(x) is an almost-periodic point.

Thus I(x) is a minimal set. ♦

Proof. It suffices to show that for each α ∈ E there
is a β ∈ E such that βαγ = γ. Indeed, we will show
that β can be chosen from I.

Since [Iα]γ ⊂ EI ⊂ I and Iαγ is compact, this Iαγ
is an ideal. Minimalness yields that Iαγ = I. Thus a
β as stated exists.

The minimalness of I yields that Eγ = I. So

I(x) = Eγ(x) = O
(
γ(x)

)
,

a minimal set. �

8: Corollary (Auslander–Ellis theorem). Every point x ∈
X is proximal with an almost-periodic point in O(x).
Hence, each distal point is almost-periodic. ♦

Proof. Pick η ∈ I, an idempotent in a minimal ideal.
Then η(x) is almost-periodic. And x is proximal with
η(x); just apply η to both. �

Characterization of recurrence by
means of idempotents

Let Tn denote
{
T k

∣∣ k ≥ n} and Tn its closure in E;
thus T1 is another name for E. Evidently

T1Tn ⊂ T1Tn by left continuity
⊂ Tn .

Hence ETn ⊂ Tn, by right continuity; Tn is an ideal.
Define Ω :=

⋂∞
n=1 Tn. Since Ω is the nested

intersection of ideals, it is an ideal. Evidently
Ω(x) :=

{
α(x)

∣∣ α ∈ Ω
}
is the “Omega limit set” of x.

By its definition, E r Ω ⊂ T1. If a T k0 ∈ T1 is
idempotent, then T k0 = limn T

nk0 ∈ Ω. Hence: The
semigroups E and Ω have exactly the same set of idem-
potents.
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9: Theorem. In the following, η ranges over all
idempotent elements in E, hence in Ω.

a: r ∈ X is recurrent IFF ∃η with η(r) = r.

b: a ∈ X is almost-periodic IFF ∃/∀ minimal
ideal(s) I in E: ∃η ∈ I with η(a) = a.

c: d ∈ X is distal IFF ∀η: η(d) = d. ♦

Proof of (a). If r recurrent then the set of β with
β(r) = r is non-void; hence a semigroup, by (‡b). So
it owns an idempotent. �

Proof of (b), (⇒). The minimalness of I makes I(a) a
minimal set; hence the almost-periodicity of a insures
that a ∈ I(a). Thus {β ∈ I | β(a) = a} is non-void
and so is a sub-semigroup; which owns an idempotent.

The converse follows from (7). �

Proof of (c). Since η(d) ∈ O(d), distality forces
η(d) = d.

Conversely, suppose that d is proximal with a
point y := β(d). By (‡a), there is an idempotent α
with α(y) = α(d) = d. The closed algebraic semi-
group {

γ
∣∣ γ(d) = y & γ(y) = y

}
is therefore non-empty, since βα is a member. Each
member γ sends d to y. But there is an idempo-
tent member which, by hypothesis, sends d to d.
Hence y = d. �

The multiplier property

Say that point x ∈ X is a recurrent multiplier if:
For every system Z and recurrent point z ∈ Z, the
pair-point 〈x, z〉 is recurrent (for the product system).

Similarly, x is a almost-periodic multiplier if it
satisfies the above when “recurrent” is everywhere re-
placed by “almost-periodic”.

10: Recurrent multiplier Theorem. A point d ∈ X is
distal IFF it is a recurrent-multiplier. ♦

Remark. The E below can either be viewed as the en-
veloping semigroup: of the product system X ×Z, or
of the “plus 1” map on the Stone-Čech compactifica-
tion of the natural numbers. This so-called “universal
system” is developed below. �

Proof of (⇒). Given a recurrent point z ∈ Z, let η be
an idempotent which fixes z. But η(d) = d since d is
distal. Hence η(〈d, r〉) = 〈d, r〉. �

Proof of (⇐). We may assume that X = O(d). Sup-
pose, for the sake of contradiction, that d is proximal
to some point x 6= d.

If d is almost-periodic, then x is. So we may assume
that x is almost-periodic; since if d is not, then the
Auslander–Ellis theorem assures us we can have found
an x which is. So, taking an α for which α(x) = α(d),
we may assume that α fixes x. (Otherwise, just post-
compose α with an member bringing α(x) to x.) The upshot
is that α

(
〈d, x〉

)
= 〈x, x〉 in X×X. That is, there ex-

ists a net (((mi)))i such that

Tmi(d)→
i
�x and Tmi(x)→

i
�x.

IP set

For a collection C of numbers let FS(C) denote the set
of all finite sums

∑
n∈F

n, where F ranges over all finite

subsets of C.
Fix disjoint open setsD 3 d and V 3 x. Inductively

choose positive integers n1 < n2 < . . . so that, at
stage K:

For each non-zero N ∈ FS
(
{nk}K1

)
we have

that TN (d) ∈ V and TN (x) ∈ V .
P (K):

Thus limi T
N+mi(d) = TN

(
limi T

mid
)

= TN (x) ∈ V ,
and the same holds true for “d” replaced by “x”. So
we can pick a “sufficiently large” term nK+1 ∈

{
mi
}
i

so that (P (K + 1)) holds. And so that

nK+1 > n1 + n2 + · · ·+ nK .11:

Recurrent point

Let P denote the IP seq FS
(
(((nk)))

∞
k=1

)
. Define Z :=

{0, 1}N with the product topology and with the shift S
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acting. Define a point r to be the indicator func-
tion 1P . Condition (11) yields that Snk(r) → r
as k →∞.

Since r is recurrent, the hypothesis on d says that
the pair 〈d, r〉 must be recurrent. Hence there exists a
positive p such that T p(d) ∈ D and Dist(r, Spr) < 1.
This latter condition, since r = 1P , forces p to be
in the IP-sequence P . n Consequently (P) implies
that T p(d) ∈ V . Contradiction. �

Factors and the enveloping
semigroup

Suppose we have systems (((T : X))) and (((S : Y ))) and a
factor map ψ:Y→X. (That is, ψ is a continuous surjection
with Tψ = ψS.) Let E denote E(Y ) and Ě := E(X).
Given a β ∈ E, write it as a net-limit Smi � β. We
wish to construct the righthand diagram below.

Y
S−−−−→ Y

ψ

y ψ

y
X

T−−−−→ X

Y
β−−−−→ Y

ψ

y ψ

y
X

β̌−−−−→ X

12:

Fix y ∈ Y . Since ψ is continuous,

ψ
(
βy
)

= lim
i
ψ
(
Smiy

)
= lim

i
Tmiψ(y) .

So, since ψ is surjective, β̌ := limi T
mi exists. And

ψβ = lim
i
Tmiψ = β̌ψ,13:

where the last step follows by continuity right multi-
plication, Rψ.

This β̌ is unique. For if net Snj also converges to β
then β′ := limj T

nj exists. By (13) used twice,

β′ψ = ψβ = β̌ψ.

But ψ is onto. Thus β′ = β̌.

14: Theorem. Suppose T is a factor of S as in
figure (12). Then there exists a unique continuous
surjective semigroup-homomorphism Ψ: E� Ě : β 7→
β̌ such that β̌ψ = ψβ and Š = T . ♦

Proof. Surjectivity of Ψ: Given a convergent net
γ := limTnj , some subnet of {Snj}j converges; to a
member of Ψ 1(γ).

To check that Ψ is a homomorphism fix α, β ∈ E.
Then by (13) used three times,

[βα]∨ ψ = ψβα = β̌ψα = β̌α̌ψ .

Since ψ is surjective, then, [βα]∨ = β̌α̌.
Finally, to verify that Ψ is continuous, fix a conver-

gent net αi � β in E. The continuity of ψ followed
by (13) yields

lim
i
ψαi = ψβ = β̌ψ .

Hence limi α̌iψ = β̌ψ exists. But ψ is surjective and
so limi α̌i exists and equals β̌. �

The universal point-transitive
system

(In this section all maps are continuous and all spaces are Haus-

dorff.) Let N
ϕ
↪→N̂ be the canonical embedding of the

set of natural numbers into its Stone-Čech compacti-
fication. Each map f :N→K into a compact space has
a unique lift f̂ :N̂→K such that f̂ ◦ ϕ = f .

Each function P :N→N is necessarily continuous
and so p := ϕ ◦ P is continuous and lifts to a map
p̂ : N̂→ N̂ making this diagram commute:

N̂ p̂−−−−→ N̂

ϕ
x ϕ

x
N P−−−−→ N

15:

Our application will be when P is the “plus 1” map
n 7→ n + 1, and p̂ is its correspondent in the Stone-
Čech compactification.

16: Universal-lift Theorem. Suppose x0 ∈ X is a tran-
sitive point for system (((T : X))). Then there exists a
unique factor map ψ̂ : N̂→ X making T a factor of p̂
with ψ̂(0) = x0. ♦
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Proof. The continuous map ψ:N→X : n 7→ Tn(x0) in-
tertwines P with T . Then its lift, ψ̂, is the desired fac-
tor map. For the three commutativity relations (15),
Tψ = ψP and ψ̂ϕ = ψ give that this diagram is com-
mutative,

N̂ p̂−−−−→ N̂

ψ̂

y ψ̂

y
X

T−−−−→ X

17:

when restricted to the image ϕ(N) —which is a dense
subset of N̂. Hence the diagram commutes. �

18: Corollary. The enveloping semigroup E(N̂) of
the shift on the Stone-Čech compactification of the
natural numbers acts on all point-transitive systems.♦

Uniqueness

Consider the category of triples (((T : X,x0))) where x0

is a transitive point for T . A morphism,

(((S : Y, y0)))
ψ−→(((T : X,x0)))

in this category, is a factor map (((S : Y )))
ψ→(((T : X)))

sending y0 7→ x0. Given two such triples, the mor-
phism ψ is unique, since x0 has dense orbit.

Suppose, in addition to ψ, we have a morphism in
the other direction:

(((S : Y, y0)))
ξ←−(((T : X,x0))) .

Then ξ ◦ ψ is an automorphism of (((S : Y, y0))) which,
by uniqueness, must be the identity map. Similarly,
ψ ◦ ξ is the identity on X. Consequently ψ and ξ are
isomorphisms of the two triples.

Applying this to two potential universal-lifts yields
this unsurprising conclusion: The universal-lift(((
p̂ : N̂, 0

)))
is unique up to isomorphism.

Realizing E(N̂) using the full-shift
Henceforth: Let σ, rather than p̂, denote the extended
“plus 1” action on N̂. Also, let E denote the universal
enveloping semigroup E(N̂).

Although the the shift acting on X := {0,1}N is
not isomorphic to

(((
σ : E

)))
, their enveloping semigroups

are. The quotient map ψ̂ of diagram 17 gives rise
to the semigroup-homeomorphism Ψ: E� E(X) of
Theorem 14.

19: Full-shift Theorem. The above Ψ is a semigroup-
isomorphism. ♦

Proof (J.Auslander and N.Markley.) We need to show
that Ψ is injective. So, fixing distinct α,β ∈ E, we
need to exhibit an x ∈ X such that α(x) 6= β(x). (Of
course, “α(x)” means Ψ(

[
α
]
)x.) Since E is Hausdorff we

can fix disjoint open nbhds U 3 α and V 3 β. With
σ the shift on N̂, define x by

x�k = 1 iff σk ∈ U

for k ∈ N. Fix nets σki � α and σnj � β. We may
assume that all σki ∈ U and all σnj ∈ V . Chasing
definitions yields

α(x)�0 = lim
i
σki(x)�0 = lim

i
x�ki = 1

β(x)�0 = lim
j
σnj (x)�0 = lim

j
x�nj

= 0 .

The latter follows by observing that since each σnj is
in V , it is not in U . �

Remark. Actually, for an arbitrary topological
group G, let G act on {0, 1}G by translation. Then
the enveloping semigroup of this action is canonically
isomorphic to the Stone-Čech compactification of G.�

The action on E(T )

(It is convenient, in this section, to let “orbit” mean non-
negative orbit. And to let E(T ) be the closure of the non-
negative powers of T ; thus the identity, I, is a member of E(T ).)

Fix a (((T : X,x0))) in our category and set E := E(T ).
Right multiplication RT :E→E by η 7→ ηT is contin-
uous. By definition, the RT -orbit of the identity, I,
is dense in E. Our original triple is a factor of a new
triple in our category, via the natural morphism

N : (((RT : E, I))) −→ (((T : X,x0))) : η 7→ η(x0) .
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To check that TN = NRT , fix η and observe

TN(η)
def
== Tη(x0) = ηT (x0) since T ∈ Z(E),

= N(ηT )

= NRT (η)

as desired. This natural morphism, when applied
with T our universal-lift σ, yields that Rσ is universal
–whence this curious result:

20: Corollary. N̂ is homeomorphic with its enveloping
semigroup via the correspondence

E(N̂) 3 η ←→ η(0) ∈ N̂ .

In consequence, N̂ inherits a natural (non-commutative)
semigroup operation which extends the “+” operation
of the embedded copy of N. ♦

Remark. For a, b ∈ N̂, the value of “ab” is α(b), where
α ∈ E(N̂) is the unique member for which α(0) = a.�

§C Stone-Čech compactification

This is the general case. For certain special cases, a
description using ultrafilters is convenient.

We first describe the evaluation map in the general
context. The Stone-Čech compactification of S arises
when we specialize the F , below, to be C[X] —the
set of continuous functions.

The evaluation map
Given a topological spaceX let F be a set of functions,
all with domain X. That is, for each f ∈ F we have
a topological space Ωf and map f : X → Ωf . Define
the evaluation map

e:X→
∏
f∈F

Ωf e(x) :=
〈
f 7→ f(x)

〉
.

Suppose {xj | j ∈ J} is a net in X and xj � y.
For each continuous f ∈ F , then, f(xj)→

j
�f(y)

in Ωf . Hence e(·) is continuous at the point y ∈ X
iff each f ∈ F is continuous at y. Thus

The evaluation map e(·) is continuous IFF
each f ∈ F is continuous

M-a:

Map e(·) is injective IFF collection F sep-
arates points

M-b:

The latter means that
[
∀f : f(x) = f(z)

]
=⇒ x = z.

When is e:X→e(X) a homeomorphism?

Let Π denote the product space
∏
f∈F Ωf . Assume

now that F is a separating collection of continuous
functions. Here is a condition sufficient to make e a
homeomorphism from X to e(X). Say that F is a
Tychonoff family if

For each open set U ⊂ X and point y ∈
U there exists g ∈ F such that g(y) /∈
Cl
(
g(X r U)

)
, where the closure is taken

in Ωg.

21:

To argue that e is a homeomorphism we need to show
it open: Fix an open U ⊂ X and construct an open
set U ′ ⊂ Π fulfilling

e(U) = e(X) ∩ U ′ ,
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as follows. Given a point y ∈ U , take a function
g ∈ F satisfying (21). For each point α ∈ Π let α(f),
an element of Ωf , denote its “f -th” component. By
definition of the product topology, the projection map
P : Π→ Ωg of α 7→ α(g), is continuous. Hence the set

W y := P 1(Ωg r g(X r U)
)

=
{
α ∈ Π

∣∣ α(g) ∈ Ωg r g(X r U)
}

is an open subset of Π. Note that e(x) is inW y if and
only if g(x) ∈ Ωg r g(X r U). Hence

e(y) ∈W y and e(X r U) ∩W y = ∅.

Thus the open set U ′ :=
⋃
y∈U W

y is disjoint from
e(X r U), as desired. This shows

If F is a Tychonoff family then e is a home-
omorphism of X onto e(X).M-c:

Constructing the compactification
A compactification of X is a pair (e : K) where K
is a compact Hausdorff space and e:X→e(X) ⊂ K is
a homeomorphism onto a dense subset of K.

Let I be the topologized unit interval and let C[X]
denote the collection of continuous functions from
X → I. Say that X is a Tychonoff space if C[X]
is a Tychonoff family and (this is non-traditional usage)
points are closed. Together, these imply that X is
Hausdorff, indeed completely-regular (T3.5).

The partial order on
compactifications

Given two compactifications e:X↪→K and f :X↪→L,
say that

(f : L) ≥ (e : K)

if there exists a continuous map ϕ:L→K such that
ϕ ◦ f = e. Of necessity, such a ϕ is unique since f(X)
is dense in L. (Since K is Hausdorff, nets have unique limits,
etc.) Also, e(X) is dense in K and so ϕ(L) is a dense
compact subset of K; thus ϕ is surjective.

Relation ≥ is transitive. Moreover, if

(f : L)
ϕ
≥ (e : K) and (e : K)

ψ
≥ (f : L)

then (f : L) ≥ (f : L) via ψ◦ϕ. Thus ψ ◦ ϕ = IdL, by
uniqueness. Similarly, ϕ◦ψ = IdK . Hence ϕ and ψ are
homeomorphisms carrying f to e and vice versa. This
is a reasonable definition of isomorphism between
two compactifications.

22: Theorem.Every Tychonoff spaceX has a compact-
ificationX

e
↪→X̂ with the following “compact space lift-

ing property”.
For each compact Hausdorff space K and
continuous map ϕ:X→K there is a con-
tinuous “lift” ϕ̂(X̂)K satisfying ϕ̂ ◦ e = ϕ.
(This ϕ̂ is unique since e(X) is, by hypothesis,
dense in X̂.)

23:

Moreover, if X is compact then X and X̂ are homeo-
morphic via e. ♦

24: Corollary. The Stone-Čech compactification
is ≥ every other compactification. In particular, it
is unique (upto isomorphism). ♦

Proof. Suppose e : X ↪→ K and f : X ↪→ L both have
lifting property, (23). Then there exist continuous
maps

K
f̂−−−−→ L

e

x ∥∥∥
X

f−−−−→ L

and

L
ê−−−−→ K

f

x ∥∥∥
X

e−−−−→ K

Thus ê(f̂ e) = êf = e. Hence êf̂ :K � is the identity
on e(X), a dense subset of X. Since K is Hausdorff,
the continuity of êf̂ forces it to be the identity map
on all of K.

Similarly, f̂ ê:L � is the identity map. Thus ê and f̂
are homeomorphisms (using compactness and Hausdorff
again) carrying f to e and vice versa. �

There is much more of this to be typed up. The
notes are in Ergodic NB NB:Topological Dynamics
and are handwritten.

NOTE: The embedding of a space into its Stone-
Čech compactification is essentially the same as the
embedding of a vector space into its double-dual.
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