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ABSTRACT: These are explanatory notes to myself on well-
known subjects. This discusses: Nets, Ellis enveloping semi-
group and the Stone-Cech compactification.

§A Nets

A directed-set I is a poset (I, <) such that

Vi,j € I, 3k € I for which, simultaneously,
k>=iandk = j.

A subset S C I is eventual if

dk, Vix=k: S>31.

In contrast, S is a frequent (or cofinal) subset of I if

Vk, i =k: S>i.
Given directed-sets (I, <) and (J, <), the product
directed-set (I x J,< ) has partial-order

(i.J) <(7,§) TFF [i<d & j=j].

We know that in a metric space,”! the convergent
sequences determine the topology. In a topological
space X, the role of sequence is played by a more
general object called a “net”. A net, in X, is a map-
ping from a directed-set I into X. Agree to write a net
as (zj)ier or —suppressing /- as . To indicate that
each z; lies in a subset A C X, I may write Z C A.

Convergence

One writes

y=limx; or y = netlim(¥)

Tr; — Y or
el

“!ndeed, this holds in each LCG (locally-countably generated)
space.

Webpage http://people.clas.ufl.edu/squash/

if: For each open U > vy, the set {i | z; € U} is even-
tual.  One says that “the net ¥ is eventually in each
given neighborhood of y.”

Similarly, y is an accumulation point of ¥ if —for
each nbhd U > y— the net is frequently in U.

Henceforth, let N[y] denote the directed-set of open
nbhds of y. So in the directed-set (N[y],=< ) the rela-
tion “U <V’ means U D V.

1: Lemma. X is a topological space.

a: X is Hausdorfl IFF net limits are unique.

b: For A C X: Ify is an accumulation point of a
net @ C A then y € A. Conversely, if y € A then
there exists a net in A which converges to y.

c: A map f: X—Q is continuous IFF for each con-
vergent net ¥ = (x;); in X, its image (f(x;)), is
a convergent net in ). (We may write this image net

as [().) 0

Proof of (a). Suppose a net converges to both y and z.
Given neighborhoods U € N[y|] and V' € N|z|, the net
is eventually in both U and V' and so these nbhds are
not disjoint.

Conversely, suppose that y and z do not have dis-
joint separate nbhds. Then for each pair U > y and
V> z we can pick a point z(;;y) in U N V. The re-
sulting net Z is indexed by the product directed-set
N[y] x N[z]. And netlim(Z) = y and netlim(Z) = y. 4

Proof of (b). For the second assertion, suppose that
y € Aand let N = N[y|. For each V € N pick a point,
call it ay, in ANV. Then (ay)yen forms a net con-
verging to y. ¢

Proof of (¢).  To prove the (=) direction, suppose
that net (x;); converges to a point z € X. For each
nbhd V of f(z), the set f(V) is a nbhd of z and
so (xi); is eventually in f™(V). Hence (f(x;)), is
eventually in V. Thus f(z,)—l>Hf(4)

For the (<) direction, suppose f not continuous.
Then there is an open V C Q and a point z € f~1(V)
such that every nbhd U of z “sticks out” of (V)
i.e, letting N denote N|z],

VUEN :  There exists a point 17 € U~ fH(V).
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By construction, then, (zy)yen is a net in X converg-
ing to 2. Yet the net (f(21)),,, cannot be converg-
ing to f(z) since this net is included in the comple-
ment of V. ¢

Def: The analog of a subsequence. Consider two
directed-sets (S,<) and (I,x). A directed-set
map (DSMap) is a map ¢:S—1I (not necessarily injective
nor surjective) such that

ta: @ is order preserving: s; < s2 — ¢(s1) <

p(s2).

tb: The range, ¢(S5), is frequent: For all k € I there
exists s € S with ¢(s) = k.

A DSMap ¢ determines a subnet (x
might let ags denote x
a= <as>s€S~
Sometimes the map ¢ is implicit. For example, sup-
pose that N is a directed-set. Then one subnet of

(wi)ier 1s

ps))scse e

o(s) and write the subnet as

<xi>(i,V)€I><N :

Here, our S is IxN, with product order, and ¢ is the
“forgetful function” (i, V) — i. O

2: Theorem. A point y € X is an accumulation
point of net (z;);c; IFF there exists a subnet which
converges to . O

Proof of (=-).  Let N = NJ[y] and let (I x N,<)
be the product directed-set. Let S be the sub-poset
consisting of those pairs (i, V') such that z; € V. Now
(S, <) is a directed-set: ~ Suppose that (i,1) and
(i',V'") are in S. Pick j € I dominating ¢ and i’
Since y is an accumulation point of (x;) je there exists
k > j for which z;, € V.NV’. Thus (k,V NV’) is an
element of S dominating both (i, V) and (i', V).
The net (z;)(;1/)cs is a subnet of (z;);c; and it by
definition converges to y. ¢

Proof of («). Suppose ¢:S—1 is a DSMap such that

lm T = Y-

Fixing a nbhd U of y, the set E = {s | w,) € U}
is eventual in S. Thus its image, ¢(F), is frequent
in 1. ¢

Convergence
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3: Theorem. X is compact IFF every net (x;); has a
convergent subnet. O

Proof of (=). By the preceding theorem, it suffices to
show that the net has an accumulation point. Suppose
it does not. Then for each point y € X there is an
open set U > y for which the net fails to be frequently
in U. So there exists v € I with z; ¢ U for every i =
.
Make explicit the dependence by writing U, and ,.
By compactness there is a finite set of points y, call
it F, such that {U,},cr covers X. But for each i € I
which dominates all the {7, },ecr, we have the absur-
dity that z; fails to be in e p Uy —which equals X .4

Proof of (<=). Assume X is non-compact and let O
be a open cover with no finite subcover. Set

I = {FCO|Fis finite} .

Since the union of two finite sets is finite, the
pair (I, C) is a directed-set. For each &, the union
JJF is not all of the space and so we can choose a
point

g € XN|JTF.

Could the net (7, _, have an accumulation point y €
X7 Fix some V € O owning y. Then Z fails to be
frequently in V, since x5 ¢ V for each ¥ 5 V' —that
is, as soon as J is greater than the singleton {V} in
the partial order on I. So y is not an acc. point. ¢

Filename: Problems/Dynamics/TopoDyn/enveloping™.latex
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§B  Enveloping Semigroup

Consider a semigroup H and define, for each g € H,
the right and left multiplications R,L,:H—H by s —
sg and s — gs. Evidently

Rgyo Ry = Ry, LyoLj = Ly

A half-topological semigroup H is a non-void com-
pact Hausdorff topological space such that each R,
is continuous. Let L(H) denote the set of g € H
such that L, is continuous. This [L(H) is a sub-semi-
group which is, generally, not compact. For each sub-
set H C H, let Z(H) (the center of H) denote the set
of o € H which commute with every member of H.

4: Lemma.  Suppose H is a subsemigroup of IL(H)
and let H denote the closure of H in H.

a: H is a semigroup; hence it is an half-topological
semigroup.

b: Z(H) > Z(H). o

Proof of (a). For each pair 3, € H, pick
nets p; — (3 and 7; — ¢ in H. For each fixed 14
we have, since L, is continuous, that p;v;——p;C.

J
Hence H O {p;¢ |i € I}. But R is continuous and
SO

,BC note hm ch
el

isin H. ¢

Proof of (b). Fix o € Z(H). Given 8 € H, we will
show that o8 = fo. Pick a net H 5 p; — . Thus

since o € L(H);

since right multiplication is
continuous.

opi HO_B?
pio — o,

But op; equals gp; by hypothesis. Thus the righthand

sides are equal and so o € Z(H). ¢

An algebraic (left) ideal is a subset I C H satis-
fying HI C I. An “ideal I” shall mean a non-empty
algebraic ideal which is compact. Similarly, an al-
gebraic sub-semigroup H C H satisfies HH C H
whereas a “semigroup H” will be, in addition, non-
empty and compact. Thus a semigroup, now, is what
we were previously calling a “half-topological semi-
group”. By Zorn’s lemma, each semigroup H includes

B ENVELOPING SEMIGROUP
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a: a minimal ideal I.

b: a minimal sub-semigroup H.

5: Lemma.  FEach minimal semigroup H is a single-
ton {n}; thus n is an idempotent element. O

Remark. Each ideal I in a semigroup H is itself a
semigroup. Thus each ideal contains an idempotent
element. 0

Notation: Agree to use “minimalness” as the prop-
erty of a minimal ideal or sub-semigroup, in contrast
to the “minimality” of a minimal set in X.

Proof. Fix an n in our minimal semigroup H. Then
Hy 22t R, (H) is the continuous image of a compact
set and is therefore itself compact. Since Hpn is a
semigroup, and Hn C H, minimalness implies that
Hn = H. Thus the set

H = {ceH|on=n}

is non-empty. Now H is the inverse image of a closed
set under a continuous map, since H is R;'({n}).
Thus H is closed, hence compact. Evidently HH C H
and so the minimalness of H yields that H = H.
Hence n € H and is idempotent. ¢

6: Lemma. Consider T:XO, a continuous self-map of
a compact Hausdorff topological space. Then

a: (X*X,0) is a half-topological semigroup, where o
denotes composition.

b: For each o € X*X: The mapping 1 + an is con-
tinuous IFF «: X—X is continuous. O

Proof of (a). XX is compact Hausdorff by Ty-
chonoft’s theorem and is a semigroup under composi-
tion. We need but check that right multiplication is
continuous. So fixing a, 8 € XX, we show that R,
is continuous at 3.

In the product topology, “n; — £ is equivalent to
“Vrxe X : 7}1'(:17)7H5(:1:)”. This implies that

VeeX: (a(x))—i)HB(a(:L‘)) :

So nja——La. Thus n — na is continuous. ¢
7

Filename: Problems/Dynamics/TopoDyn/enveloping™.latex
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Proof of (b). For the (<) direction, suppose « contin-
uous. If 7, ~— [ then for all  one has n;(z) — [(x)
and consequently «(n;(x))——a(3(x)) by the conti-

nuity of a. Thus an;, — af.

Conversely, for each convergent net z; — vy in X,
there exists a convergent net 7; — [ in X** with
ni(y) = x; and S(y) = y. (Just let B be the identity and
let each 7); be the identity except at y.) If « is such that left
multiplication is continuous, then arn; must converge
to af. A fortiori an;(y) — af(y), i.e Oz(iL’i)7>>—>Oz(y).

This shows « to be continuous as a self—map/ of X. ¢

Definition. Given an algebraic semigroup H in-
cluded in L(X*¥), its closure H € X*¥ is a semi-
group by (4). The Ellis enveloping semigroup of T,
written E(T) or E(X), is the closure of the pow-
ers {T" | n€Zy} in X*X. So, “orbit” will mean
“forward orbit”. Agree to use O7(x) or just O(x) to
denote the (forward) orbit {77 (x)}>° . Let O(x) de-
note its closure. As an aside, by (4) the powers of T
commute with every member of F/(T). O

Mirroring dynamical properties in
the enveloping semigroup

Let E denote F/(X) and «, /3,7 denote elements of E.
For a subset H C E, let H(z) denote {a(x) | o € H}.
Thus E(z) equals O(z).

Two points x,y are proximal, written xPy, if
Opyr(z,y) intersects the diagonal. Thus xPy IFF
there exists « such that o(z) = a(y). For future use,
recall that a distal point r € X is proximal, among
points y € O(x), only to itself.

A point x is recurrent if for each neighborhood
U = x there exists a positive n with 7" (x) € U. That
is, there is a net such that 7" (T)—]>>—>.T, hence, if

f(x) = x for some /3.

Point z is almost-periodic if O(z) is a minimal
set, or equivalently: y € O(z) = x € O(y). That
is, if and only if Vo, 33 such that f(a(z)) =

It is convenient to note the following.

).

fa: For fixed z,y € X: The (possibly empty) set
{a € E|a(z) =a(y)} is a closed algebraic ideal.

Characterization of recurrence by means of idempotents

Prof. JLF King

Ib: With fixed x € X and sub-semigroup H: The
(possibly empty) set {3 e H | B(L) = ZL'} is a closed
algebraic semigroup.

7: Lemma. If I is a minimal ideal of E, then for

each v € I:
Vx : ~(z) is an almost-periodic point.

Thus I(x) is a minimal set. O

Proof. It suffices to show that for each o € E there
is a § € E such that fay = v. Indeed, we will show
that 8 can be chosen from I.

Since [[a]y C EI C I and Iary is compact, this o~y
is an ideal. Minimalness yields that /o~y = I. Thus a
[ as stated exists.

The minimalness of I yields that Ey = I. So

I(z) = Ey(x) = O(y(x)),

a minimal set. ¢

8: Corollary (Auslander—Ellis theorem).  Every point x €
X is proximal with an almost-periodic point in O(x).
Hence, each distal point is almost-periodic. O

Proof. Pick n € I, an idempotent in a minimal ideal.
Then n(x) is almost-periodic. And x is proximal with
n(z); just apply 1 to both. ¢

Characterization of recurrence by
means of idempotents
Let T, denote {T* | k > n} and T, its closure in E;
thus T is another name for E. Evidently
TlTn C TlTn
cT,.

by left continuity

Hence ET,, C T, by right continuity; T, is an ideal.

Define Q@ = N2, T,. Since Q is the nested
intersection of ideals, it is an ideal. Evidently
O(z) = {a(z) | @ € Q} is the “Omega limit set” of z.

By its definition, Ex.Q C T;. If a 7% € T is
idempotent, then 7% = lim, 7" < ). Hence: The
semigroups E and ) have exactly the same set of idem-
potents.

Filename: Problems/Dynamics/TopoDyn/enveloping™.latex
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9: Theorem. In the following, n ranges over all
idempotent elements in IE, hence in ).

a: r € X is recurrent IFF dn with n(r) = r.

b: a € X is almost-periodic IFF 3/¥V minimal
ideal(s) I in E: In € I with n(a) = a.

c: d e X isdistal IFF Yn: n(d) = d. O

Proof of (a).  If r recurrent then the set of 5 with
[(r) = r is non-void; hence a semigroup, by (ib). So
it owns an idempotent. ¢

Proof of (b), (=). The minimalness of I makes /(a) a
minimal set; hence the almost-periodicity of a insures
that a € I(a). Thus {f €| ((a) =a} is non-void
and so is a sub-semigroup; which owns an idempotent.

The converse follows from (7). ¢

Proof of (c). (d), distality forces
n(d) = d.

Conversely, suppose that d is proximal with a
point y := 3(d). By (fa), there is an idempotent «
with a(y) = a(d) = d. The closed algebraic semi-

group

Since 7)(d) €

{v]v(d) =y &~(y) =y}

is therefore non-empty, since So is a member. Each
member v sends d to y. But there is an idempo-
tent member which, by hypothesis, sends d to d.
Hence y = d. ¢

The multiplier property

Say that point x € X is a recurrent multiplier if:
For every system Z and recurrent point z € Z, the
pair-point (x, z) is recurrent (for the product system).

Similarly, = is a almost-periodic multiplier if it
satisfies the above when “recurrent” is everywhere re-
placed by “almost-periodic”.

10: Recurrent multiplier Theorem. A point d € X is
distal IFF it is a recurrent-multiplier. O

Recurrent point
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Remark. The E below can either be viewed as the en-
veloping semigroup: of the product system X x Z, or
of the “plus 1” map on the Stone-Cech compactifica-
tion of the natural numbers. This so-called “universal
system” is developed below. O

Proof of (=). Given a recurrent point z € Z, let n be
an idempotent which fixes z. But n(d) = d since d is
distal. Hence n({d,r)) = (d,r). ¢

Proof of (<). We may assume that X = O(d). Sup-
pose, for the sake of contradiction, that d is proximal
to some point x # d.

If d is almost-periodic, then x is. So we may assume
that x is almost-periodic; since if d is not, then the
Auslander—Ellis theorem assures us we can have found
an x which is. So, taking an « for which a(z) = a(d),
we may assume that « fixes x. (Otherwise, just post-
compose & with an member bringing a(x) to ac) The upshot
is that «((d,z)) = (z,z) in XxX. That is, there ex-
ists a net (m;), such that

T™i(d)——x and T™(x)——uz.

IP set

For a collection € of numbers let FS(C) denote the set

of all finite sums Y n, where F ranges over all finite
ned

subsets of €.

Fix disjoint open sets D 3 d and V' 3 x. Inductively
choose positive integers n; < no < ... so that, at
stage K:

For each non-zero N € FS({n;.}1*) we have
P(K): v N
that TV (d) € V and T (z) € V.

Thus lim; TV+™i(d) = TV (lim; T™id) = TV (z) € V,
and the same holds true for “d” replaced by “z”. So
we can pick a “sufficiently large” term nx i € {m;}
so that (P(K + 1)) holds. And so that

i

11: nNK4+1 > N1 +ng+---+ng.

Recurrent point

Let P denote the IP seq FS((ny),~,). Define Z :=
{0,1}" with the product topology and with the shift S

Filename: Problems/Dynamics/TopoDyn/enveloping™.latex
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acting. Define a point r to be the indicator func-
tion 1p. Condition (11) yields that S™(r) — r
as k — oo.

Since r is recurrent, the hypothesis on d says that
the pair (d, ) must be recurrent. Hence there exists a
positive p such that TP(d) € D and Dist(r, SPr) < 1.

This latter condition, since r = 1p, forces p to be
in the IP-sequence P. n Consequently (P) implies
that TP(d) € V. Contradiction. ¢

Factors and the enveloping
semigroup

Suppose we have systems (7: X) and (S:Y) and a
factor map ¢:Y —X. (That is, 1 is a continuous surjection
with T¢ = ¢S.) Let E denote E(Y) and E = E(X).
Given a § € E, write it as a net-limit ™ — 3. We
wish to construct the righthand diagram below.

S B

Y — Y Y —— Y
12w ] o]
x I, x vy 2 x

Fix y € Y. Since 9 is continuous,

Y(By) = limy(S™y) = ImT™ 4 (y).
So, since 1 is surjective, = lim; T™ exists. And
13: Y8 =lmT™ ¢ = By,

where the last step follows by continuity right multi-
plication, R.

This /3 is unique. For if net S™ also converges to 3
then ' :=lim; T™ exists. By (13) used twice,

B =B = By
But ¢ is onto. Thus 3’ = 3.

14: Theorem. Suppose T is a factor of S as in
figure (12). Then there exists a unique continuous
surjective semigroup-homomorphism V: E — E: 8 —

B such that B =13 and S =T. O

The universal point-transitive system

Prof. JLF King

Proof.  Surjectivity of ¥U: Given a convergent net
v = lim 7™, some subnet of {S™}; converges; to a
member of U7 (v).

To check that ¥ is a homomorphism fix «, 5 € E.
Then by (13) used three times,

[Ba)" ¢ = YPa = fa = Pay.

Since v is surjective, then, [Ba]Y = fa.

Finally, to verify that ¥ is continuous, fix a conver-
gent net a; — [ in E. The continuity of 1 followed
by (13) yields

limya; = 48 = Bi.

Hence lim; d;1) = B exists. But 1 is surjective and
so lim; ai; exists and equals j. ¢

The universal point-transitive
system

(In this section all maps are continuous and all spaces are Haus-

dorff.) Let N<SN be the canonical embedding of the
set of natural numbers into its Stone-Cech compacti-
fication. Each map f:N— K into a compact space has
a unique lift f':Igl—>K such that fo po=1F.

Each function P:N—N is necessarily continuous
and so p := o P is continuous and lifts to a map
p: NN making this diagram commute:

N 24N

15: 4 SDT
P
N — N
Our application will be when P is the “plus 1”7 map

n — n+ 1, and p is its correspondent in the Stone-
Cech compactification.

16: Universal-lift Theorem. Suppose xg € X is a tran-
sitive point for system (T: X). Then there exists a
unique factor map U: N> X making T a factor of p
with 1(0) = xo. O

Filename: Problems/Dynamics/TopoDyn/enveloping™.latex
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Proof. The continuous map ¢:N—X: n +— T"(xz¢) in-
tertwines P with T'. Then its lift, LA, is the desired fac-
tor map. For the three commutativity relations (15),
T =1 P and 'zf)ap = 1) give that this diagram is com-
mutative,

N 25 N
17: Q&J J}J

x 1o X
when restricted to the image ¢(N) —which is a dense
subset of N. Hence the diagram commutes. ¢

~

18: Corollary. The enveloping semigroup E(N) of
the shift on the Stone-Cech compactification of the
natural numbers acts on all point-transitive systems.Q

Uniqueness

Consider the category of triples (T': X, z) where xg
is a transitive point for T. A morphism,

(S: Y, 50)—=(T: X, 20)

in this category, is a factor map (S: Y)g(T : X)
sending yg — xp. Given two such triples, the mor-
phism 1 is unique, since xg has dense orbit.

Suppose, in addition to v, we have a morphism in
the other direction:

(S: Y, y0) (T X, 20) .

Then & o 4 is an automorphism of (S: Y, ) which,
by uniqueness, must be the identity map. Similarly,
1 o £ is the identity on X. Consequently ¢ and £ are
isomorphisms of the two triples.

Applying this to two potential universal-lifts yields
this unsurprising conclusion:
(]5: N, 0) is unique up to isomorphism.

The universal-lift

A~

Realizing F/(N) using the full-shift

Henceforth: Let o, rather than p, denote the extended
“plus 17 action on N. Also, let E denote the universal
enveloping semigroup F(N).

The action on E(T)
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Although the the shift acting on X = {0,1}" is
not isomorphic to (a: E), their enveloping semigroups
are. The quotient map zﬂ of diagram 17 gives rise

to the semigroup-homeomorphism V: [E — E(X) of
Theorem 14.

19: Full-shift Theorem. The above V¥ is a semigroup-
isomorphism. O

Proof (J.Auslander and N.Markley.) We need to show
that W is injective. So, fixing distinct o, € E, we
need to exhibit an = € X such that o(x) # [(x). (Of
course, “a(z)” means ¥([a])z.) Since E is Hausdorff we
can fix disjoint open nbhds U > a and V 3 . With
o the shift on N, define = by
zl,=1 iff o¥eU

for k € N. Fix nets 0" ~— o and ¢"7 ~— 3. We may
assume that all 0" € U and all 0™ € V. Chasing
definitions yields

a(z)]y = limo"(z)|y = limz],, = 1
B(x)lp = lime™ (z)], = limal, = 0.
J J

The latter follows by observing that since each ¢ is
in V, it is not in U. ¢

Remark. Actually, for an arbitrary topological
group G, let G act on {0, I}G by translation. Then
the enveloping semigroup of this action is canonically
isomorphic to the Stone-Cech compactification of G.[J

The action on F(T)

(It is convenient, in this section, to let “orbit” mean non-
And to let E(T) be the closure of the non-
negative powers of T'; thus the identity, I, is a member of E(T))
Fixa (T: X, x0) in our category and set E := F(T).
Right multiplication Rr:E—E by n — 7T is contin-
uous. By definition, the Rp-orbit of the identity, I,
is dense in E. Our original triple is a factor of a new
triple in our category, via the natural morphism

negative orbit.

N: (Rp: E, 1) — (T: X,z0): 1+ n(xo).

Filename: Problems/Dynamics/TopoDyn/enveloping™.latex
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To check that TN = NRr, fix n and observe

TN(m) < Tn(zo) = 1T (o)

=N(nT)
= NRr(n)

since T € Z(E),

as desired. This natural morphism, when applied
with T our universal-lift o, yields that R, is universal
—whence this curious result:

20: Corollary. N is homeomorphic with its enveloping
semigroup via the correspondence

E(N) >+ n(0) eN.

In consequence, N inherits a natural (non-commutative)
semigroup operation which extends the “+” operation
of the embedded copy of N. O

Remark. For a,b € I§T, the value of “ab” is a(b), where

~

a € E(N) is the unique member for which «(0) = a.[]

When is e: X —e(X) a homeomorphism?
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§C Stone-Cech compactification

This is the general case. For certain special cases, a
description using ultrafilters is convenient.

We first describe the evaluation map in the general
context. The Stone-Cech compactification of S arises
when we specialize the F, below, to be C[X]| —the
set, of continuous functions.

The evaluation map

Given a topological space X let F' be a set of functions,
all with domain X. That is, for each f € F' we have
a topological space 2y and map f: X — €1;. Define
the evaluation map

e X— H Qf
fer

e(x) = (f > f(z)).

Suppose {z; | j€ J} is a net in X and z; — y.
For each continuous f € F, then, f(z;)——f(y)
J

in Q. Hence e(-) is continuous at the point y € X
iff each f € F'is continuous at y. Thus

The evaluation map e(+) is continuous IFF

M-a: } .
each f € F is continuous

Map e(+) is injective IFF collection F sep-
arates points

The latter means that [Vf: f(z) = f(2)] = z==z.

M-b:

When is e: X—e(X) a homeomorphism?

Let II denote the product space [[;cp 2f. Assume
now that F' is a separating collection of continuous
functions. Here is a condition sufficient to make e a
homeomorphism from X to e(X). Say that F is a
Tychonoff family if

For each open set U C X and point y €
U there exists g € F such that g(y) ¢
Cl(9(X \U)), where the closure is taken
in €).

21:

To argue that e is a homeomorphism we need to show
it open: Fix an open U C X and construct an open
set U’ C II fulfilling

e(U) = eX)NnU',
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as follows. Given a point y € U, take a function
g € F satisfying (21). For each point a € II let a(f),
an element of 1y, denote its “f-th” component. By
definition of the product topology, the projection map
P11 — Qg of a + «(g), is continuous. Hence the set

WY =P (Q,\ g(X \ 1))
={acIl|alg) € Q~g(X\U)}

is an open subset of II. Note that e(z) is in WY if and
only if g(z) € Q4 ~ g(X ~ U). Hence
e(y) e WY and e(X\NU)NWY =g.
Thus the open set U := |J,; W is disjoint from
e(X ~ U), as desired. This shows

If F' is a Tychonoff family then e is a home-

M-c: omorphism of X onto e(X).

Constructing the compactification

A compactification of X is a pair (e : K) where K
is a compact Hausdorff space and e: X —e(X) C K is
a homeomorphism onto a dense subset of K.

Let I be the topologized unit interval and let C[X]
denote the collection of continuous functions from
X — I. Say that X is a Tychonoff space if C[X]
is a Tychonoff family and (this is non-traditional usage)
points are closed. Together, these imply that X is
Hausdorff, indeed completely-regular (73.5).

The partial order on
compactifications

Given two compactifications e: X—K and f: XL,
say that

(f:L) = (e: K)

if there exists a continuous map ¢:L—K such that
po f =e. Of necessity, such a ¢ is unique since f(X)
is dense in L. (Since K is Hausdorff, nets have unique limits,
etc.) Also, e(X) is dense in K and so ¢(L) is a dense
compact subset of K; thus ¢ is surjective.

The partial order on compactifications
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Relation > is transitive. Moreover, if

(f:L)g(e:K) and (e:K)g(f:L)

then (f : L) > (f : L) viavop. Thus ¢ o p = Idy, by
uniqueness. Similarly, poy = Idg. Hence ¢ and v are
homeomorphisms carrying f to e and vice versa. This
is a reasonable definition of isomorphism between
two compactifications.

22: Theorem. Every Tychonoff space X has a compact-
ification X< X with the following “compact space lift-
ing property”.
For each compact Hausdorff space K and
continuous map p: X—K there is a con-
23:  tinuous “lift” $(X)K satisfying ¢ oe = .
(This @ is unique since e(X) is, by hypothesis,

dense in X )
Moreover, if X is compact then X and X are homeo-
morphic via e. O
24: Corollary. The Stone-Cech compactification

is > every other compactification. In particular, it
is unique (upto isomorphism). O

Proof. Suppose ¢: X «— K and f: X < L both have
lifting property, (23). Then there exist continuous

maps
K—L—>L L —*5 K
T
x L .1 X 5 K

Thus é(fe) = éf = e. Hence éf:KO is the identity
on e(X), a dense subset of X. Since K is Hausdorff,
the continuity of é f forces it to be the identity map
on all of K.

Similarly, fé:L@ is the identity map. Thus é and f
are homeomorphisms (using compactness and Hausdorff
again) carrying f to e and vice versa. ¢

There is much more of this to be typed up. The
notes are in ERGoODIC NB NB: Topological Dynamics
and are handwritten.

NOTE: The embedding of a space into its Stone-
Cech compactification is essentially the same as the

embedding of a vector space into its double-dual.
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